Supervised Neural Gas and Relevance Learning in Learning Vector Quantization

نویسندگان

  • Th. Villmann
  • F. - M. Schleif
  • B. Hammer
چکیده

Learning vector quantization (LVQ) as proposed by Kohonen is a simple and intuitive, though very successful prototype—based clustering algorithm.Generalized relevance LVQ (GRLVQ) constitutes a modification which obeys the dynamics of a gradient descent and allows an adaptive metric utilizing relevance factors for the input dimensions. As iterative algorithms with local learning rules, LVQ and modifications crucially depend on the initialization of the prototypes. They often fail for multimodal data. The combination of GRLVQ and the neural gas algorithm (NG) is capable of learning highly multimodal data, whereby it shares the benefits of gradient dynamics and neighborhood learning in NG and an adaptive metric from GRLVQ. Up to now, the method was applied only to artificial data sets. The aim of the paper is to demonstrate the power of the approach in a real world application of character recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Supervised Neural Gas for Learning Vector Quantization

In this contribution we combine approaches the generalized leraning vector quantization (GLVQ) with the neighborhood orientented learning in the neural gas network (NG). In this way we obtain a supervised version of the NG what we call supervised NG (SNG). We show that the SNG is more robust than the GLVQ because the neighborhood learning avoids numerically instabilities as it may occur for com...

متن کامل

Learning Vector Quantization for Multimodal Data

Learning vector quantization (LVQ) as proposed by Kohonen is a simple and intuitive, though very successful prototype-based clustering algorithm. Generalized relevance LVQ (GRLVQ) constitutes a modification which obeys the dynamics of a gradient descent and allows an adaptive metric utilizing relevance factors for the input dimensions. As iterative algorithms with local learning rules, LVQ and ...

متن کامل

An Informational Energy Approach to Feature Selection

In this work, we focus on machine learning methods for handling data sets containing large amounts of irrelevant information. We address two key issues: the problem of selecting relevant features, and the problem of weighting (ranking) these features. We describe our Energy Supervised Relevance Neural Gas (ESRNG) algorithm, a kernel method which uses the maximization of Onicescu’s informational...

متن کامل

Border sensitive fuzzy vector quantization in semi-supervised learning

Abstract. We propose a semi-supervised fuzzy vector quantization method for the classification of incompletely labeled data. Since information contained within the structure of the data set should not be neglected, our method considers the whole data set during the learning process. In difference to known methods our approach uses neighborhood cooperativeness for stable prototype learning known...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010